Synthesis of the 8P-Pyrrolizidine Bases (+)-Isoretronecanol, (+) **-Laburnine, and (+)-Supinidine**

By **DAVID** J. **ROBINS*** and **SANTI SAKDARAT**

(Department of *Chemistry, University of Glasgow, Glasgow* G12 *SQQ)*

Summary The synthesis of the three title compounds in optically active form from natural 4-hydroxy-L-proline is described.

OVER 30 pyrrolizidine alkaloids have been characterised as ester derivatives of the six bases (1) - (6) .¹ We report a general route to the synthesis of all six bases in optically active form, and exemplify our approach with the synthesis of $(+)$ -isoretronecanol (1) , $(+)$ -laburnine (3) , and $(+)$ supinidine **(5).**

Regiospecific 1,3-dipolar cycloaddition of ethyl propiolate to the postulated azomethine ylide² formed by heating the NO -diformyl derivative (7) [†] of natural $(-)$ -4-hydroxy-*L*proline with acetic anhydride at 140 "C for 10 h gave the dihydropyrrolizine ester **(8)** $\{[\alpha]_D^{18} + 35.3^\circ \text{ (CHCl}_3) \}$ in 80% yield (Scheme). Removal of the formyl group with ethanolic ammonia afforded the alcohol **(9).** Catalytic hydrogenation of (9) gave (80%) the crystalline ester (10) $\{[\alpha]_D^{18}$ + 73.4° (CHCl₃)}, formed by stereospecific *cis*addition of hydrogen to the less sterically hindered β -face of the ester *(9).* Proof of the stereochemistry of the ester **(10)** was obtained as follows. Replacement3 **of** the 6ahydroxy-group of **(10)** by chlorine followed by catalytic hydrogenation yielded **(82%)** the pyrrolizidine ester **(1 1)** ${[\alpha]}_D^{18}$ + 61.2° (EtOH) }. Lithium aluminium hydride reduction of the ester (11) gave (94%) $(+)$ -isoretronecanol **(1)** $\{[\alpha]_D^{100} + 70.2^\circ \text{ (EtOH)}; \text{ lit.4 } [\alpha]_D^{20} + 71.7^\circ \text{ (EtOH)}\}.$ The overall yield of optically active product was 45% from the readily available ($-$)-4-hydroxy-L-proline.

SCHEME. Reagents; i, H₂, 10% Pd-C, AcOH; ii, SOCl₂; iii, H,, Raney Ni.

Epimerisation at C-1 of the thermodynamically less stable ester **(11)** was achieved with sodium ethoxide in ethanol,⁵ and the product was reduced with lithium aluminium hydride to give $(+)$ -laburnine (3) $[64\%$ yield from (11)] $\{[\alpha]_D^{22} + 14.6^\circ \text{ (EtOH)}$; lit.⁶ $[\alpha]_D + 15.4^\circ$ (EtOH) }. The ester (11) was also converted $(21\%$ overall yield) into (+)-supinidine (5) $\{[\alpha]_D^{18} + 7.6^{\circ}$ (EtOH); lit.⁴ $[\alpha]_D^{20} + 9.2^{\circ}$ (EtOH) } by the steps reported⁷ for the racemic compound. **(A** higher overall yield was obtained when rigorous purification of the intermediate selenides was omitted.)

Compounds **(l), (3),** and *(5)* were characterised as their picrates. The picrates of **(1)** and *(5)* were identical (ir., ¹H n.m.r., and mass spectra, mixed m.p.) with samples of natural $(+)$ -isoretronecanol picrate and $(+)$ -supinidine picrate, respectively.

Since natural $(-)$ -4-hydroxy-L-proline can be converted into its enantiomer by epimerisation of both chiral centres,* the foregoing route can be used in principle to synthesize the Sa-pyrrolizidine bases **(2), (4),** and *(6).* However, a better procedure was devised using the intermediate **(9),** which has only one chiral centre. Accordingly, the

-f **All** new compounds gave satisfactory analytical and spectroscopic **data.**

hydroxy-ester *(9)* was converted into its tosylate derivative active form. Total syntheses of optically active ester (91% yield). Inversion of stereochemistry was then alkaloids derived from these bases can now be envisaged. achieved by S_N2 displacement with formate anion (tetra-
ethylammonium formate in dry acetone) to give (84%) Victoria, Australia, for samples of $(+)$ -isoretronecanol ethylammonium formate in dry acetone) to give (84%) Victoria, Australia, for samples of $(+)$ -isoretronecanol
the enantiomer of (8) $\{[\alpha]\}_0^{23}$ – 34.2° (CHCl₃) required for picrate and $(+)$ -supinidine picrate. One the enantiomer of **(8)** $\{[\alpha]_D^{23} - 34.2^\circ \text{ (CHCl}_3)\}\$ required for conversion, as outlined above, into the 8a-pyrrolizidine the University of Glasgow for **a** studentship. bases $(-)$ -isoretronecanol (4) , $(-)$ -trachelanthamidine (2) , and $(-)$ -supinidine (6) .

This strategy makes possible the synthesis of all six 1-hydroxymethylpyrrolizidines in good yield in optically (Received, 17th September 1979; *Corn.* 999.)

¹L. B. Bull, C. C. J. Culvenor, and **A.** T. Dick, 'The Pyrrolizidine Alkaloids,' North-Holland, Amsterdam, **1968;** 'The Alkaloids' Specialist Periodical Reports, The Chemical Society, London, **1971-9,** vols. **1-9; D.** J. Robins, *Adv. Heterocyclic Chem.,* **1979, 24, 247;** N. K. Kochetkov and A. M. Likhosherstov, *ibid.,* **1965, 5, 315. 2M.** T. Pizzorno and S. M. Albonico, *J. Org. Chem.,* **1974, 39, 731.**

- **⁴**C. C. J. Culvenor and L. W. Smith, *Austral. J. Chem.,* **1967, 20, 2499.** R. S. Sawhney, C. K. Atal, C. C. J. Culvenor, and L. W. Smith, *Austral. J. Chem.,* **1974, 27, 1805.**
-
- *⁶***S.** Brandange and C. Lundin, *Acta Chem. Scand.,* **1971, 25, 2447.**
- N. K. Hart and J. A. Lamberton, *Austral. J. Chem.,* **1966, 19, 1259. ⁷**D. J. Robins and S. Sakdarat, *J.C.S. Perkin I,* **1979, 1734.**
-
- **⁸D.** S. Robinson and J. P. Greenstein, *J. Biol. Chem.,* **1952, 195, 383.**